469 research outputs found

    Scaling and exact solutions for the flux creep problem in a slab superconductor

    Full text link
    The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is considered. Logarithmic dependence of the activation energy on the current density is assumed, U=U0 ln(J/Jc), with a field dependent Jc. The density B of the magnetic flux penetrating into the superconductor, is shown to obey a scaling law, i.e., the profiles B(x) at different times can be scaled to a function of a single variable. We found exact solution for the scaling function in some specific cases, and an approximate solution for a general case. The scaling also holds for a slab carrying transport current I resulting in a power-law V(I) with exponent p~1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling is broken and p crosses over to U0/kT.Comment: RevTex, 10 pages including 6 figures, submitted to Phys.Rev.

    Irreversible magnetization in thin YBCO films rotated in external magnetic field

    Full text link
    The magnetization M of a thin YBaCuO film is measured as a function of the angle θ\theta between the applied field H and the c-axis. For fields above the first critical field, but below the Bean's field for first penetration H*, M is symmetric with respect to θ=π\theta =\pi and the magnetization curves for forward and backward rotation coincide. For H>H* the curves are asymmetric and they do not coincide. These phenomena have a simple explanation in the framework of the Bean critical state model.Comment: 14 pages, 7 PostScript figure

    Silicon micromachined hollow microneedles for transdermal liquid transfer

    Get PDF
    This paper presents an improved design and fabrication process [ 13 for hollow micro needles with the proper mechanical strength and sharpness to be applied for painless transdermal transfer of liquids. Tests have shown that liquids like blood are drawn into the needle by capillary forces, reducing the need for active pumping. The fabrication method allows different needle shapes like blades and pencils, is robust enough to be applied for largerscale production, and enables the development of a complete micro-TAS for e.g. blood analysis
    • …
    corecore